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Abstract— This paper describes a visual sensor that is able to localize a mobile robot relatively to planar

marks. In our application, the planar marks are traffic signs, very common in urban scenarios. As an application

for the sensor, we also propose an approach based on Particle Filters for combining the information from the

visual sensor and the robot odometry. Experimental results with an actual mobile robot are presented.
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1 Introduction

There are many applications for mobile robots in
outdoor urban environments which demand pre-
cise robot localization. Since such areas are popu-
lated with traffic signs with standard dimensions,
using them for localization is a natural approach.

Traffic sign detection is usually performed us-
ing a combination of color and shape informa-
tion, as in (Bahlmann et al., 2005). Miura et al.
(2000) present an active vision system, composed
of two cameras. The system first detects candi-
dates for traffic signs in a wide-angle image and
then a telephotocamera is directed to each candi-
date position and capture it in a larger resolution.
In this paper we present a traffic sign detector
which provides absolute 3D localization informa-
tion that can be combined with relative sensors
in order to obtain precise localization. The main
contribution of this work, when comparing with
those above, is to use a single camera to perform
planar mark detection and 3D localization.

The main idea of most methods for mobile
robot outdoor localization is to combine relative
sensors measures, such as the ones obtained from
odometry and inertial sensors, and absolute infor-
mation. Nowadays, most of these methods use
GPS (Global Positioning System) sensors to pro-
vide absolute information. However, the GPS has
some limitations for ground robots localization in
urban scenarios. For example, it can be observed
that weather condition, trees and buildings can
obstruct the received signal from satellites, affect-
ing its performance (Thrapp et al., 2001).

To improve GPS based localization, (Panzieri
et al., 2002) and (Agrawal and Konolige, 2006)
combine such information with the one provided
by landmark detectors. Landmarks were also used
in (Maeyama et al., 1994). In that paper, besides
odometry, the authors use sonar and visual sensors
in order to detect trees. Trees were also used as
landmarks in (Adams et al., 2004), where a laser
range finder was used as the main sensor.

To show the applicability of the traffic sign de-
tector, we combine it with two types of odometry
(traditional and visual based) to localize a mo-
bile robot in an outdoor environment. A detailed
description of the problem we are considering is
given in the next section.

2 Problem Definition

Consider a wheeled mobile robot equipped with
encoders and a visual sensor operating in an out-
door environment. The environment is populated
with several traffic signs with previously known
positions and orientations. The traffic signs, act-
ing as planar visual marks (or beacons), are iden-
tical and cannot be uniquely identified. Our prob-
lem consists in estimating the robot’s pose (posi-
tion and orientation) in the environment by com-
bining odometry information with information ob-
tained from the camera and beacon positions.

A standard solution for this problem is to pre-
dict the robot position using odometry and correct
the current estimate with absolute pose obtained
from the visual mark positions. However, here, we
have to deal with an extra problem: we use a sin-
gle camera to estimate the relative pose between
the robot and the planar marks. This results in
up to four possible solutions to the problem, from
which we have to choose the correct one during
the localization process.

This paper describes the traffic sign based lo-
calization system, which uses standard computer
vision techniques for beacon detection an relative
pose estimation, and a particle filter for sensor in-
tegration. Although the complete robot localiza-
tion methodology is presented here, this paper fo-
cuses on the computer vision part of it. A deeper
discussion of the sensor fusion approach can be
found in (Moreira et al., 2007)



Figure 1: SIFT keypoints (small white marks) dis-
tribution over a typical outdoor image.

3 Planar Signs based Localization

This section describes the identification and local-
ization of planar visual marks used in our local-
ization algorithm. As visual marks we use traffic
signs. More specifically, “Parking Allowed” traffic
signs, which are very common in the streets of our
university campus. They are also very simple: a
letter E inside a red circle. The next subsections
describe how we identify the marks in the image
and how the pose between the mark and the cam-
era is computed.

3.1 Beacon identification

To identify the E sign we use SIFT (Scale Invari-
ant Feature Transform) (Lowe., 2004). This tech-
nique transforms stable keypoints in a grayscale
image into feature vectors, each of which is in-
variant to image translation, scaling, and rotation,
and partially invariant to affine projection and il-
lumination changes.

The keypoints identification is the first step of
the process. They are chosen based on their sta-
bility over scale and orientation of the image, i.e.,
over different views of the scene. It is implemented
via a difference-of-Gaussian function. Typically,
in an image of size 640x480 pixels, there are a
few hundreds of potential interest points. Fig. 1
shows the distribution of keypoints on a sample
image containing a traffic sign.

It could be noticed that the center of the E is
almost always chosen as a stable point, regardless
of scale and view point. So this point was chosen
to be the feature that indicates the possibility of
presence of a traffic sign in the image.

The goal of our system is to identify whether
a given feature vector belongs to the center of the
traffic sign or not. In order to do that, we use
a simple perceptron node, which is trained with
samples of feature vectors from points of the E
center and from random positions other than that.

Once the center of the E has been identified
— point p′c in Fig. 2 —, it is easy to identify the
corners of the letter. First, we get the grayscale
level, gL, of the image pixel at p′c and binarize the
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Figure 2: Definition of the corners of the traffic
sign. Left: real corners and reference frame at-
tached to the beacon. Right: projection of the
corners onto the image plane.

image using a threshold value th proportional to
that, th = αgL. From p′c we use standard blob
coloring methodologies to obtain the blob region
which forms the E (see Fig. 3). The corners of the
right side of the letter — p′1 and p′3 — will be the
points from the blob that are farthest from the
point p′c. The corners of the left side — p′0 and p′2
—, the farthest ones from p′1 and p′3.

To check if the sign has been correctly identi-
fied, we resample the region determined by points
p′0, p′1, p′2 and p′3 in a 64x64 image. Then, we
perform a normalized cross correlation operation
between the obtained image and a standard im-
age containing the traffic sign. If the result of the
operation is above a certain threshold, we can as-
sure that the identified points actually belong to
the traffic sign.

The resampling task is performed on the fol-
lowing way. We define 64 equally spaced points
between p′1 and p′3 — right side — and between
p′0 and p′2 — left side. Then 64 horizontal line
segments linking the corresponding points in the
two sides are traced. The same operation is done
with the upper and bottom sides of the examined
traffic sign, obtaining 64 vertical lines. The 64x64
image is obtained by the intersection of the hor-
izontal and vertical line segments. For reducing
the discretization errors, bicubic interpolation is
used on the resampling process.

It is not exactly true that equally spaced
points in the image are related to equally spaced
points in the original scene. However, this ap-
proximation can be made when the distance be-
tween object and camera is large when compar-
ing with the object dimensions. This is very of-
ten true on the traffic sign identification process.
Once the identification of the points from p′0 to
p′3 does not depend on the object orientation, we
may say that this resampling process is invariant
to translation, scale and orientation (translation
invariance is obtained when we identify the cen-
ter of the E via SIFT). This pattern recognition
methodology has advantages over standard ones
found in the literature based on Fourier and Mellin
transforms (Belo, 2006), which use the modulus
invariance of the transforms under translation and
scale, respectively, in combination with resam-
pling methods, as the Log-Log and the Log-Polar



Figure 3: Identification of the main blob.

transform. It is known that most of the signal
content is present on the phase of the transform.
Thus, using only the modulus implies loosing in-
formation, which can lead to misrecognition.

Once the corners have been identified, it is
possible to construct an equation system which
lead us to the beacon localization. This is shown
next.

3.2 Sign Localization

Using the identified corners, the localization of
the landmark can be performed through the per-
spective three-point problem. This problem was
solved in many ways and can be summarized as
follows (Wolf et al., 1991): “from a single per-
spective view of the vertices of a known triangle,
determine all the possible camera-triangle config-
urations”. Figure 4 illustrates the geometry of the
problem. Using the points p′0, p′1 and p′2 and the
camera intrinsic parameters, it is possible to find
three unit vectors in the camera reference frame
— û0, û1 and û2— pointing in the direction of the
vertices of the triangle. From the cosine law, the
unknown parameters — s0, s1 and s2 — can be
related with the sides of the triangle as follows:

s2
0 + s2

1 = D2
1 − 2s0s1 cos θ01

s2
0 + s2

2 = D2
2 − 2s0s2 cos θ02

s2
1 + s2

2 = D2
3 − 2s1s2 cos θ12

where θij is the angle between vectors ûi and ûj .
This set of equations can produce up to four

physically possible solutions. However, as was
pointed out in (Wolf et al., 1991), the solution set
usually consists of only two configurations. In this
work, we use the approach suggested by (Fischler
and Bolles, 1981) to compute the problem solu-
tions via a quartic polynomial equation.

The use of the perspective three-point prob-
lem for mobile robot localization is also proposed
in (Moreira and Pereira, 2006). However, there,
only one of the solutions is picked, based on spa-
tial restrictions on the robot localization. Here, as
will be seen in the next section, all the solutions
of the problem are used in a sensor fusion process.
A particle filter naturally selects the correct one.
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Figure 4: Perspective Three Point Problem.

4 Particle Filter

As mentioned before, in this work a Particle Fil-
ter (Thrun et al., 2005) is used to combine odom-
etry and beacon localization. The main reason for
using this filter instead of other techniques, such
as the Kalman Filter, is its ability to deal with
multimodal distributions. In our problem, mul-
timodal distribution appears not only due to the
fact that we have several identical beacons and
the robot is not able to distinguish which one is in
its field of view, but also because of the multiple
solutions given by the planar beacon localization.

The Particle Filter was addressed in many
works (Reckleitis, 2003) and, basically, it can be
described as follows. Several particles, each one
representing an instance of the robot pose, are dis-
tributed around the actual robot position. Once
the robot starts moving, the new position of the
particles are estimated using a model for the robot
and the actual measurements of the robot veloc-
ities, which are used as inputs for the model. A
random noise is added to the measurements to
represent the sensor error. This is known as the
prediction step. In the second step of the filter,
known as correction step, the particles with low
probability of being in the position given by an ab-
solute sensor are eliminated, while the ones with
high probabilities are replicated. The estimate of
the robot pose is given by a function of the par-
ticles distribution. The approaches used in this
paper for prediction, correction and final pose es-
timation are described next.

4.1 Prediction

In the prediction step, the robot pose, p =
(x, y, θ), is computed using the kinematic model
represented by Equations (1), where vk e ωk are
the system inputs at instant k — linear velocity
and angular velocity, respectively —, and ∆t is
the time interval between instants k and k + 1.

xk+1 = xk + vk.∆t.cos(θk)

yk+1 = yk + vk.∆t.sin(θk) (1)

θk+1 = θk + ωk.∆t

The inputs are taken both from wheel odome-



try and also from the visual odometry sensor pro-
posed in (Machado and Pereira, 2006). In one
hand, since the wheel rotation is measured by
wheel odometry in spite of the actual robot dis-
placement, this sensor is responsible for large ac-
cumulation errors in the prediction step, mainly
due to wheel slippage (Thrapp et al., 2001).

On the other hand, the visual odometry sen-
sor, being a device connected to the robot, is
immune to slippage but is contaminated by the
noise caused by the vertical movement of the robot
(see (Machado and Pereira, 2006)).

Considering the particularities of these two
sensors, we decided to use most of time the lin-
ear and angular velocities measured by the wheel
odometry sensors. However, if a slippage situa-
tion is detected, the measurements will be taken
from the visual odometry sensor. Details on the
combination of these two kinds of odometry are
presented in (Moreira et al., 2007).

For each particle a random number is added
to the variables which work as inputs to the model,
v and ω. The variances of the random numbers
are chosen so that they represent the precision of
the sensor. Also, to each particle i is associated a
weight wi that represents the quality of the parti-
cle. In the first interaction of the filter, all parti-
cles start in the robot initial position and have the
same weight, which will be updated in the correc-
tion step.

4.2 Correction

The correction step occurs every time a traffic sign
is identified. The main problem is that it is not
known which of the landmarks was actually iden-
tified and, even, which of the possible solutions
associated with the beacon is the correct one. To
take this uncertainty into account, we use the solu-
tion which better matches with the predicted pose
of the considered particle, as proposed in (Adams
et al., 2004). Then the weight w of each particle
i is updated according to:

wi
k+1 = wi

k max
j=1,...,N

f(pj
e, p

i
k+1), (2)

where f is a function of the predicted pose pi
k+1

of
the i-th particle and of the estimated robot pose
pj

e supposing that the j-th solution is the correct
one.

In our specific case, it was observed that the
visual sensor may output accurate distance esti-
mates. However, the same cannot be said about
orientation. Thus, by using the polar coordinates
r and θ and a heading value ϕ we will represent the
uncertainty model of the sensor in a more faithful
way than using cartesian coordinates. Thus, con-
sidering the pose in the correction step as shown
in Fig. 5, function f in Equation 2 was defined as:
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Figure 5: Estimation of particle’s pose. {E} is the
reference frame of a beacon, as shown in Fig. 2,
and {Pi} is the reference frame of a particle i.
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As the robot moves, the set of particles are
spread over the environment and some of them
drift far enough so it do not represent the un-
certainty associated with the robot movement
anymore. Thus, it is necessary to resample in
such a way that only the particles with consid-
erable probability are preserved. As suggested in
(Reckleitis, 2003), to monitor the representabil-
ity of the particles we use the effective sample
size. When the effective sample size drops be-
low a threshold, the set of particles is resampled.
On the resampling process, the simple technique
of selecting with replacement is used. Details on
this technique can be found in (Reckleitis, 2003),
what by April of 2007 was available on-line.

5 EXPERIMENTS

This section shows experiments that validates the
proposed methodology. We start by describing
our experimental setup.

5.1 Experimental Setup

The experiments were realized with a P3-AT
robot by ActivMedia Robotics. The robot was
equipped with odometry and two IEEE1394 cam-
eras. The robot was controlled using a joy-
stick plugged in a laptop running Microsoft Win-
dows XP (see Fig. 6). Each of the sensors
were executed in a individual thread. The infor-
mation acquired/computed by the threads were
timestamped and asynchronously sent to a server,
which was responsible for centralizing and storing
the data to be processed off-line.

The experiments took place in an outdoor en-
vironment at the UFMG campus, in an concreted
plane area of about 400m2. Twelve control points,
distanced about 5.0 meters from each other, were
marked and mapped. In order to validate the
localization results, during the test execution, a
joystick button was pressed every time the robot
reached one of these points. Five “Parking Al-
lowed” traffic signs were inserted on the environ-
ment and mapped using the visual system itself.



Figure 6: Experimental setup: 1 – joystick for
robot control, 2 – laptop, 3 – camera for visual
odometry, 4 – camera for beacon identification, 5
– traffic sign (beacon), 6 – a control point used for
validation purposes only.

5.2 Results

In the description of our experiment, first consider
the control points represented by the grid inter-
sections in Fig. 7. They are labeled from A to
L. During the experiment presented in this paper,
the robot went through the control points on the
following order: G, C, D, E, J, K, L, I, A, B, H,
G. In this experiment the robot moved with lin-
ear velocities that varied from 0 to 0.6m/s. Fig. 7
shows the path obtained using the combination of
wheel and visual odometry and the complete fil-
ter (prediction and correction). The small circles
and squares over the paths represent the exact mo-
ment the actual robot was over the control points,
as perceived by the human operator. The bea-
cons location are represented by the x̂ and ŷ axis
of their reference frames {Ei}’s (the ẑ axis points
out of the page). The black marks on the par-
ticle filter path represent the moments the robot
detects a beacon.

Observe in Fig.7 that the robot rarely detects
a beacon. Therefore, most of the time the pose
estimate only relies on odometry. In spite of this,
it can be noticed that the absolute information
from the traffic signs identification can drastically
reduce the localization error. Notice in Fig. 7 that
the particle filter allows the pose to “jump” to a
better estimate as soon as it detects (by the cor-
rection step) that the current estimate is wrong.
The reduction of the error after a beacon is de-
tected is better observed in Fig. 8, which presents
the localization error over the time. In this fig-
ure, the error value is computed by the distance
between the control point and the robot pose in
the instant it should be over the control point.
The gray values represent the error obtained by
the free prediction using the two odometry sensors
and the black values represent the filter error. The
small marks on the time axis represent the time
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Figure 7: Robot path estimated by the odometry
combination (black) and using the complete par-
ticle filter (gray). The black marks on the particle
filter path represent the moment the robot has de-
tected a traffic sign. The {Ei}’s are the reference
frames of the signs. Letters from A to L label the
control points used for validation. The gray cir-
cles and squares represent the moments the robot
should be over a control point.

the robot detected a beacon. Observe that right
after a beacon detection, the pose estimate error
is reduced.

6 CONCLUSIONS

This paper presented a visual sensor that can be
used to improve robot localization in urban en-
vironments, which are populated by traffic signs.
By using information from this sensor in a particle
filter correction step, we were able to obtain good
results, even in an outdoor environment, where
the robot is subjected to wheel slippage and illu-
mination changes.

In the next steps of our research we will
work on simultaneous localization and mapping
approaches in order to consider unmapped traffic
signs, what is more likely to happen in real world
scenarios.
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